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Abstract. Agricultural product storage has a problem that need to be noticed 
because it has an impact in gaining the profit according to the number of products 

and the capacity of storage. Inappropriate combination of product causes high 
expenses and low profit. To solve the problem, we propose genetic algorithm 
(GA) as the optimization method. Although GA is good enough to solve the 

problem, GA not always gives an optimum result in complex search spaces 
because it is easy to be trapped in local optimum. Therefore, we present a hybrid 

real-coded genetic algorithm and Variable Neighborhood Search (HRCGA-

VNS) to solve the problem. VNS is applied after reproduction process of GA to 
repair the offspring and improve GA exploitation capabilities in local area to get 
better result. The test results show that the optimal popsize of GA is 180, number 
of generations is 80, combination of cr and mr is 0.7 and 0.3 while optimum Kmax 

of VNS is 40 with number of iterations 50. Even though HRCGA-VNS need 
longer computational time, HRCGA-VNS has proven to provide a better result 
based on higher fitness value compared with classical GA and VNS. 

 

1. Introduction 
 

Product storage is one of the knapsack problems that is needed to be noticed. 

Knapsack problem is a well-known NP-hard combinatorial optimization problem that 

is often encountered in many application [1], [2]. Various kind of knapsack problems 

have been applied such as budgeting project, cargo loading, bin packing, selection of 

items, material, cost-effective development, etc. [3], [4]. The aim of doing product 

storage is to maximize number of items in the storage which have the highest total profit 

with an appropriate capacity so that the items do not exceed the capacity of storage.  

Many method has been proved that can be used to solve knapsack problems such 

as local search, heuristics method and hybridization methods [1]. Genetic algorithm 

(GA) is easy to use and a simple method. It also has a wide search area and has been 

proved that can be used in many applications [5], [6], [7], [8]. GA also can be applied 

to solve knapsack problem [3], [4]. It is because GA is a heuristic method with 

population-based solution that can gives many possible solutions. So, in this research 

we propose GA as the basic method to solve the knapsack problem. 

GA is one of the heuristic methods which delivers optimal solutions by 

implementing the natural selection and the mechanism of biological evolution [9]. 

There are several steps of GA that consists of (i) initializing the population (ii) 

producing new solutions by reproduction process that consists of crossover and 
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mutation (iii) doing the selection to get the best result [10]. 

GA is good enough to solve the optimization problem [8]. However, GA not always 

gives an optimum result in complex search spaces. In finding the optimum solution, 

hybridization can improve the accuracy and efficiency of its performance [11]. GA in 

its implementation also does not always fulfill the expectation because of its inability 

to increase the variety of solution that makes it being trapped in local optimum and 

causing premature convergence [12]. GA is difficult to get out of local optimum when 

the genetic operators does not produce offspring with the higher quality then the parent 

[13]. Many researches have been done to deal with premature convergence in GA. 

Several researches combine GA and local search. This approach balances GA 

exploration capability in global area and local search exploitation capabilities in local 

area [14]. The other research use hybrid GA to improve GA performance such as 

combining GA with Simulated Annealing, Tabu Search and other local search-based 

algorithms. Moreover, doing random injection also can be used to avoid premature 

convergence in GA [15], [16]. 

We propose hybrid GA and VNS with real-coded representation in order to fix GA 

weakness. VNS can improve exploitation capabilities in local area [17] so we set VNS 

in the evaluation process to increase variety of solution and get the better results. VNS 

performs local searches by moving from one solution to another until it reaches the 

optimum local solution. Furthermore, VNS changes the structure of the environment so 

that it can find a better solution. VNS is applied to repair selected individuals at certain 

intervals in the cycle of Genetic Algorithms. Therefore, in this study we propose hybrid 

GA-VNS to solve knapsack problem of agricultural product storage. 

 

2. Problem Description 
 

This research addresses the optimization of agricultural product storage by 

determining appropriate combination of product quantities to gain maximum profit 

when the product is sold by the trader to the customer. Every product has purchase and 

selling cost that are used to calculate the revenue. The product is stored in storage 

container. This makes there are several things from storage container that has to be 

noticed to gain profit from storage process. It consists of expenses for warehouse 

maintenance and labor cost. 

Trader should minimize number of items in the storage and the total profit without 

exceed the capacity of storage. Trader should combine the number of each product to 

know the most valuable combination in gaining profit among other combinations. An 

example of agricultural product storage is showed in table 1. 

 

Table 1 Combination of product storage 

 

No. 
Product 

1 

Product 

2 

Product 

3 

Product 

4 

Product 

5 

Product 

6 

Product 

7 

Product 

8 

1 100 150 100 50 80 55 120 200 

2 150 100 200 80 1000 100 80 120 

3 200 150 300 120 250 100 400 180 

4 50 80 100 1000 250 100 200 350 

5 1000 2000 50 80 100 120 2000 150 

Table 1 shows the combination of product quantities in kilogram. There are five 

combinations where first combination shows the quantity of product 1 is 100 kg, 

product 2 is 150 kg, product 3 is 100 kg and so on. Each combination gives different 
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profit. Trader should find the appropriate combination but there is no actual method to 

determine the best combination. Nowadays, the only way trader can do is only 

predicting the combination by their experience so it does not give the appropriate result 

that affects their profit. 

 

3. Model Formulation 
 

To solve that problem, the formulation is applied to calculate the profit from the 

combination of product. The profit is gained from total revenue and total cost where to 

get high profit, total revenue (TR) should be higher than total cost (TC). The 

formulation of total cost has shown in (1) while the formulation of total revenue is in 

(2) and formulation to get total profit has shown in (3).  

 

𝑇𝐶 = (∑ 𝑃𝑥1𝑖𝑄𝑖) + 𝑃𝑥2 + 𝑃𝑥3
𝑛

𝑖=1
   (1) 

𝑇𝑅 =  ∑ 𝑃𝑦𝑖𝑄𝑖  𝑛
𝑖=1     (2) 

𝑇𝑃𝐹 = 𝑇𝑅 − 𝑇𝐶     (3) 

Parameters of the formulations are defined as follows: 

TC = total cost 

TR = total revenue 

TPF = total profit 

i = product identity 

Px1i = purchase cost of each product 

Px2 = cost of warehouse maintenance 

Px3 = labor cost 

Pyi = selling cost of each product 

Qi = the quantity of product 

 

The example of profit calculation is applied in Table 2. We choose combination 1 

from Table 1 as the example of profit calculation. From Table 2 we calculate profit 

(TPF) by looking for the deviation between total revenue (TR) and total cost (TC). Total 

revenue is total income obtained from the total selling price of all products while total 

cost is gained from total purchase cost of each product and expenses of warehouse and 

labor. From Table 2 we know that the profit gained from combination 1 is 200000. It is 

not the best result because the other combination can give higher profit. 

 



 

 

 

 

Nindynar et al. , Hybrid Real- Coded Genetic Algorithm: ... 169  

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

Table 2 Example of profit calculation 

 

Product 
Product 

1 

Product 

2 

Product 

3 

Product 

4 

Product 

5 

Product 

6 

Product 

7 

Product 

8 

Product 

quantity 
100 150 100 50 80 55 120 200 

purchase cost 

per Kilogram 
3000 2000 1000 5000 2500 3000 3500 1500 

Purchase 

cost of each 

product 

300000 300000 100000 250000 200000 165000 420000 300000 

Expenses of 

warehouse 

and labor 

120000 

TC 2035000+320000 = 2355000 

Selling cost 

per kilogram 
3500 2500 1500 6000 3500 4000 4000 2000 

Selling cost 

of each 

product 

350000 375000 150000 300000 280000 220000 480000 400000 

TR 2555000 

TPF 200000 

 

Table 2 shows that the profit gained from combination without considering the 

capacity of storage where the total of product quantity may not to exceed storage 

capacity. The relation between product quantity and storage capacity is showed in (4) 

and (5). 

 

𝑚𝑎𝑥 = ∑ 𝑏𝑖  .  𝑋𝑖
𝑛
𝑖=1     (4) 

𝑤ℎ𝑒𝑟𝑒  ∑ 𝑤𝑖  .  𝑋𝑖
𝑛
𝑖=1  ≤  𝑊𝑖    (5) 

 

The aim of (4) is to maximize the quantity of product in storage where i represent each 

product wi is weight, bi is value of the product and Xi total quantity of all products. 

Formula (5) shows that total quantity of all product may not to exceed the capacity of 

storage. Hence, there should be an optimization method to solve that kind of problem. 

 

4. Proposed Method 

4.1 Genetic Algorithm 

GA is one of the heuristic methods which delivers optimal solutions by 

implementing the natural selection and the mechanism of biological evolution [9]. 

There are several steps of GA that consists of (i) initializing the population (ii) 

producing new solutions by reproduction process that consists of crossover and 

mutation (iii) doing the selection to get the best result [10]. 

 

4.2 Variable Neighborhood Search 

VNS was first proposed in 1997 as a metaheuristic method by Mladenovic and 

Hansen [18]. VNS is successfully applied in several research such as scheduling 

problems [19], [20], optimization of high-performance concrete structure [21]. Machine 
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loading problems [22] etc. Several steps are applied in VNS procedure that starts from 

shaking, then doing local search and the last is movement phase (move or not) [23]. 

VNS is simple because it uses only two parameters that consist of the number of 

neighborhood and termination condition [21], [22]. 

 

4.3 Hybrid RCGA-VNS 

We proposed a classical GA and VNS to solve knapsack problem in product storage. 

By considering GA exploration capability and the exploitation ability of VNS, we 

present hybrid GA-VNS in this section. This approach is purposed to give a solution as 

a recommendation of a set of items that will be kept in the storage. This method uses 

GA as the main algorithm and runs VNS to improve individual in population. More 

details of proposed method are described in the following subsection. The steps of 

proposed method are shown in Figure 1. 

 

 
 

Fig. 1. Scheme of GA-VNS 

 

The hybridization process begins by putting data and genetic parameters. Next, an 

initialization of the population consists of chromosome representation and calculation 

of fitness values. The population consists of a set of individuals represented by a 

number of chromosomes. Chromosomes are generated randomly as many as population 

size (popsize) [10]. Each chromosome represents a solution. This research uses real-

coded representation. Each gen in chromosome represents quantity of the product. On 

each chromosome, fitness values are calculated to determine the quality of the solutions 

[24]. Fitness function of product storage optimization has shown in (6). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑃𝐹 − (𝑜𝑣𝑒𝑟𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 1000)   (6) 
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The example of chromosome representation and fitness value has shown in Figure 2. 

 
 

Fig. 2. Chromosome representation 

 

Reproduction process has two genetic operators that consist of crossover and 

mutation. It is carried out to get offspring from individuals in the population. Crossover 

is part of the reproductive process in genetic algorithms that requires some strategy to 

select two parents from previous generation. These two chromosomes are crossed to 

produce new chromosome members [25]. Mutation is also an important part of genetic 

algorithms where there are few modifications randomly executed in each chosen 

chromosomes [26] to gain new chromosome variations. The process of crossover and 

mutation will produce a combination of various features in order to reach different 

directions in the search space [27]. The parameter used in the crossover operator is the 

crossover-rate (cr) while the parameter in mutation operator is the mutation-rate (mr). 

Cr and mr are used to determine the number of new chromosomes with cr × popsize to 

produce offspring from the crossover process and mr × popsize to get the offspring from 

the mutation process [5]. Reproduction methods used in this research are one-cut point 

crossover that is illustrated in Figure 3 and insertion mutation shown in Figure 4. 

 

 
Fig. 3. Crossover 

 

 
 



 
 
 
 
172 JITeCS Volume 4, Number 2, September 2019, pp 166-176 

 

 

p-ISSN: 2540-9433; e-ISSN: 2540-9824 

Fig. 4. Mutation 

 

After that both the offspring and the parent chromosome will be evaluated for 

further improvement using the VNS method. After repairing these chromosomes, they 

will enter the VNS process. In the first step of VNS procedure, we set Kmax and the 

process will start from K=1 until it reaches Kmax. In shaking step, we randomly generate 

new solution variety from offspring that we got from crossover and mutation process. 

In the next step, local search method is applied by searching a new candidate solution 

from result that we got from shaking process as initial solution. The local search is done 

iteratively as many as iteration number of local searches. After it got a new solution, it 

enters the moving phase that will decides whether it will replace the incumbent solution 

or not. If it has better fitness value, then it will move to incumbent and it is not, the 

incumbent will stay.  

Selection is done to select individuals from a set of population that consist of parent 

chromosomes and the offspring from reproduction process. In the selection process, the 

next number of chromosomes is selected based on the fitness value as many as the 

number of population sizes [10]. 

 

5. Computational Experiment 

This section shows the experimental result of proposed method that consist of GA, 

VNS and hybrid GA-VNS parameter testing. First, we did genetic parameter testing of 

GA that is divided into three testing (i) popsize testing which the result is showed in 

Figure 5 (ii) cr and mr combination testing that is showed in Figure 6 (iii) generation 

number testing that is in Figure 7. The second is testing of VNS procedure that consist 

of two operator that are Kmax which is showed in Figure 8 and number of iterations in 

local search phase that showed in Figure 9. 

 

 
 

Fig. 5. Popsize Testing 

 

Popsize testing starts from 20 population as the lowest popsize with average fitness 

value 7477500. Figure 5 shows that the best popsize of classical GA for solving this 

problem is 180 with average fitness value 7555000. The bigger population size may not 

necessarily produce a better solution. This can be seen from the testing above 180 

population that does not provide a significant increment of fitness value average. 
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Fig. 6. Generations Number Testing 

 

Generations number testing start from 6 generations as the lowest popsize with 

average fitness value 7383500 and continue with the range of 5 generations. Figure 3 

shows that the optimum number of generations is 80 with average fitness value 

7555000. The result shows that after 80 generations there is no significant increment of 

fitness value average. 
 

 
 

Fig. 7. Combination of cr and mr Testing 

 

Based on Figure 7, the highest point of cr and mr combination is on the combination 

of 0.7 and 0.3 with an average fitness value of 7555000. In solving this problem, cr 

value affects more than mr value. It is showed by the lowest fitness value average 

6905000 with combination of cr and mr 0 and 1. 
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Fig. 8. Kmax Testing 
 

Based on Figure 8 the best Kmax is found in K of 40 with fitness value average 

6992500. The bigger K value does not necessarily provide better result than the previous 

K value. It is indicated by a lower fitness value average after 40 K that does not give a 

better result. 
 

 
 

Fig. 9. Iteration Testing 

 

The optimum fitness value average has found in 50 iterations with fitness value 

average 6892500. More iteration does not necessarily produce better result. Figure 9 

shows that in the 60 generations there is lower fitness value average that is 6695000. 

 

After classical GA and VNS testing, we test parameter of hybrid GA-VNS by doing 

the same thing as we did in GA and VNS testing. The comparation of GA, VNS and 

hybrid GA-VNS is performed in Table 3. From Table 3 it is found that Hybrid GA-

VNS can be used to solve the problem by giving the best result among the three method. 

Solution of Hybrid GA-VNS is better than two other methods by reaching average of 

fitness value 7555000 in its best parameters while GA reaches average of fitness value 

7547500 and VNS 6615000. However, the best computational time refers to GA. 
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Table 3. Comparation of GA, VNS and hybrid GA-VNS 

 

GA VNS Hybrid GA-VNS 

Fitness 

Average 

Computational 

Time 

Fitness 

Average 

Computational 

Time 

Fitness 

Average 

Computational 

Time 

7547500 364.4 ms 6615000 437.7 ms 7555000 2212 ms 

 

6.     Conclusion and Future Work 

Based on the experiment that has been done, total profit of product storage can be 

gained by classical GA and VNS. It still does not reach the optimum profit because it 

can be gained by hybrid GA-VNS with higher total profit of product storage showed by 

fitness value that is higher than classical GA and VNS as shown in Table 3. Therefore, 

we can conclude that the hybridization of GA and VNS can increase local search 

capability of VNS and global search capability of GA to increase efficiency of solutions 

searching. The result shows that even hybrid GA-VNS need more computational time, 

it performs better by gaining a better fitness value than GA and VNS itself. 

Future work, usage of crossover and mutation rate can be modified as adaptive. It 

can change cr and mr adaptively so the individual variety is not restricted to one 

combination of cr and mr. GA also can be modified in the part of initializing population. 

It can be done by distribute population into several part to keep the individual diversity.  
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