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Abstract. Extractive Software Product Line Engineering (SPLE) puts features 

on the foremost aspect in domain analysis that needs to be extracted from the 
existing system's artifact. Feature in SPLE, which is closely related to system 
functionality, has been previously studied to be extracted from source code, 

models, and various text documents that exist along the software development 
process. Source code, with its concise and normative standard, has become the 
most focused target for feature extraction source on many kinds of research. 

However, in the software engineering principle, the Software Requirements 
Specification (SRS) document is the basis or main reference for system 
functionality conformance. Meanwhile, previous studies of feature extraction 
from text document are conducted on a list of functional requirement sentences 

that have been previously prepared, not literally SRS as a whole document. So, 
this research proposes direct processing on the SRS document that uses 
requirement boilerplates for requirement sentence statement. The proposed 

method uses Natural Language Processing (NLP) approach on the SRS 
document. Sequence Part-of-Speech (POS) tagging pattern is used for 
automatic requirement sentence identification and extraction. The features are 

acquired afterward from extracted requirement sentences automatically using 
the word dependency parsing rules. Besides, mostly the previous studies about 
feature extraction were using non-public available SRS document that remains 

classified or not accessible, so this work uses selected SRS from publicly 
available SRS dataset to add reproducible research value. This research proves 
that requirement sentence extraction directly from the SRS document is viable 

with the precision value from 64% to 100% and recall value from 64% to 89%. 
While features extraction from extracted requirement sentences has a success 
rate from 65% to 88%. 

 
Keywords:  Software Product Line, Feature Extraction, Natural Language 
Processing 

 

1. Introduction  

Software Product Lines (SPL) arise as a new concept in software reuse [1]. It is 

also considered as a proven paradigm strategy on software reuse that makes it 

possible for the industry to reduce development costs up to 61%, shorten time-to-

market but still maintain the product quality [2]. More than 50% of software industry 

practitioners just realized the importance of SPL after producing several products with 

an ad-hoc or single system development [3]. This condition, when the developer tries 
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to evolve those existing products into the Software Product Line (SPL), is called the 

extractive SPL method. In this process, the SPL core asset base will be built from the 

features that are extracted from existing products, while the feature itself is defined as 

a logical unit of behavior that is determined by a set of functional requirements [4] or 

abstraction from system functionality [5].  

Studies on the feature extraction from existing systems mostly use the source code 

as the object or input of the extraction process [6][7][8][9][10][11]. While other 

studies also conducted to use models including a class diagram and use case diagram 

as the objects for the extraction process [12][13]. However, most software developer 

only measures their product quality on the released software product or the 

implementation result regardless of the original requirement [14], Therefore, software 

feature extraction from specification document is more suitable based on the software 

engineering perspective rather than model or source code to acquire the more valid 

feature. This is because the specification document is the basis of the validation and 

verification of system functionality in the software development process [15][16]. 

Currently, most studies on SPL feature extraction from Software Requirement 

Specification (SRS) document were processing the list of requirements that have been 

previously prepared, not SRS as a whole document [17][18][19]. As such, this method 

still needs expert intervention to manually separate requirement sentences from the 

SRS document that might be tedious and error-prone.  In this research, we process 

directly from SRS documents that use requirement boilerplate to construct that 

requirement statements. Such requirements provide specific patterns to be processed 

using Natural Language Processing (NLP) approach.   

This article is constructed using the following sections.  Section 2 will situate 

related works that were previously conducted to show the state of the art in this 

research area. Section 3 will explain the methodology of this research and followed by 

section 4 that shows the research results. Section 5 will discuss the result 

measurement and opinion from the researcher to explain the logical manner. The last 

section will conclude this research along with the future work planning and 

suggestions for other researchers. 

2. Related Works  

Previous three studies on feature extraction from SRS document process 

requirement statement sentences that were already broken down into the list as they 

appear in the document. First, the statistical approach Term Frequency and Inverse 

Document Frequency (TF/IDF) is used in feature mining from the SRS document’s 

functional requirement sentences. The research focused on several Mapping Rules 

(MRs) to identify the Semantic Model (SM) from each functional requirement 

sentence [17]. Second, Feature and Feature Relation Extraction (FFRE) tool for 

Eclipse plugin are also introduced to assist the feature model extraction process from 

the SRS document. This tool use NLP processing to identify actor, action, and object 

from each requirement sentence and heuristic processing afterward to determine 

which features are mandatory and which are optional [18]. The third research was 

done by collaborative researchers between academic and industry practitioners. The 

feature is defined as a higher-level abstraction of requirements or specifically as a 

cluster of requirements. In their framework, the extraction method for feature 

candidates is Latent Semantic Analysis (LSA) and Vector Space Model (VSM) while 

further classification is conducted using Hierarchical Agglomerative Clustering 

(HAC) [20]. 
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Feature extraction researches working on natural language document were also 

done on product descriptions or brochures. First research initialized with the web-

scrapping process on Softpedia for antivirus software, meaningful terms are then 

acquired using the TF-IDF method. The classification process is done afterward using 

a two-stage Spherical k-Means (SPK-Means) clustering algorithm to construct feature 

candidates, while the Frequent Pattern (FP) growth algorithm is used for feature 

naming [21]. Second research extract software feature commonality and variability 

mining on domain-specific natural language documents. The extraction process are 

done automatically using contrastive analysis of Natural Language Processing (NLP) 

approach to identify single and multi-word domain-specific terms [22].  

Another Information retrieval (IR) with a system-oriented approach has been 

proposed for automatic identification of functional requirements from SRS 

documents. Orthogonal Variability Model (OVM) and Filmore's case theory are used 

to extract and characterize functional requirements. The functional Requirement 

Profile (FRP) concept is introduced in this research as a domain analysis method to 

give quick insight into system functionalities. FRP itself is represented as a “verb-do” 

pair of words that state user-visible system functionality. In the extraction process, 

this research method only able to parse the SRS document that already complies with 

the IEEE-830 document structure. This standardization enables parsing only on the 

specific section of the SRS document [23]. 

3. Basic Notions 

3.1. SRS Documents and Requirement Boilerplate 

Consistent use of language in the SRS writing will make a statement of 

requirements easy to understand and identify. A simple example is a use of the word 

"shall" which shows the existence of a statement of a requirement in a sentence. 

Another example is the choice of the words "shall", "should", and "may" which 

express different levels of priority to a requirement [4]. For determining the 

syntactical structure of a single requirement, the syntactical requirements template as 

a sentence blueprint was introduced [24] and illustrated as seen in Figure 1. This 

template is now commonly referred to as requirement boilerplates. While boilerplates 

itself mean the grammatical structure that is formulated to provide specific patterns to 

avoid complex and inconsistent patterns [25]. Furthermore, the usage of boilerplates 

for requirements will facilitate automated document analysis using Natural Language 

Processing (NLP). 

 

Figure 1. Requirements Boilerplate Template 
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3.2. Feature on Extractive Software Product Line (SPL)  

Feature Model (FM) is a notation that is commonly used as an artifact resulting 

from the domain analysis process. Feature Model Diagram is considered capable of 

describing the similarities and variations of a set of features that can be applied to 

SPL [26]. The common process of making FM is manually done by an expert based 

on existing software product descriptions, whether structured or not. This process is 

error-prone and time-consuming [27]. Automatic FM diagram formation has been 

proposed in a study based on a feature catalog extracted from source code [8].  

The extractive software product line approach using the requirements engineering 

(RE) and natural language as a source or object extraction that also called the 

requirements reuse (RR) [23]. The results of the requirements reuse process can be a 

list of features or a grouping of features from a single software product. In the context 

of SPL, the extraction results can be in the form of feature models (FM) of several 

software products as SPL core asset base, although in the process are still semi-

automatic [19] [28]. The illustration of the extractive software product line is 

illustrated in Figure 2. 

Existing System 1

Existing System 2

Existing System 3

SPL Core Asset base

Product Configuration

New System 1

New System 2

New System 3

 

Figure 2. Extractive SPL Illustration 

3.3. Natural Language Processing (NLP) for Information 

Extraction 

Currently, NLP is widely used in studies working on human language documents, 

since there are many public NLP libraries to use i.e. Google SyntaxNet, Stanford 

CoreNLP, NLTK Phyton library, and spaCy [29]. NLP library provides several 

pipelines to process the documents as the input are illustrated in Figure 3. Sentencizer 

can split text document to sentences series, Tokenizer can split document or sentence 

to token series, token itself can be individual word or words phrase when text 

chunking method is applied, Part-of-Speech (POS) tag is code tagging for every token 

identified, it can be noun, verb, determiner, adjective, adverb, etc [25]. NLP library 

also can have a pre-trained model to add more capability on Named Entity Recognizer 

(NER) to automatically identify detected entity as person, organization, nation, etc. It 

also can have Dependency Parser for text chunking (phrase detection) or sentence 

boundary detection. Both  NER and dependency parser is available in the spaCy NLP 

library [30].    
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Figure 3. NLP Process Pipeline for Information Retrieval from Text Document 

[31] 

At the moment, there are few limitations in published researches on feature 

extraction from natural language documents, i.e. unavailable tools for evaluation, 

restricted or limited input, irrelevant feature naming, non-reproducible result, and 

domain engineer intervention in the process [32]. While this research is aimed to 

produce a tool for automatically extracting software features directly from SRS 

documents without any human intervention in the process. The tool will be applied 

and tested using selected SRS from the Public Requirement Engineering (PURE) 

dataset [33] to justify its correctness.  

4. Methodology 

4.1. Research Questions 

The research questions in this research are established as follows: 

 RQ 1: What approach or technique needs to be constructed to automatically 

extract features directly from the SRS document?  

 RQ 2: What rules of processing that need to be formulated to automatically 

extract requirement sentences and features?  

 RQ 3: How accurate is the automated extraction method?  

4.2. Data Acquisition 

SRS documents that are used in this research selected from Public Requirement 

Engineering (PURE) dataset that is published in 2017 and publicly available on the 

internet [33]. Since this research focuses on automatic feature extraction from the 

SRS document, so this dataset is suitable to be used. Rationalization is also made to 

select certain documents that are possible to be checked manually for the analysis 

described in Figure 4.  

 

 

 

 

Figure 4. Dataset Rationalization Illustration  
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Based on 79 SRS documents in the dataset, there are 13 documents consistently 

using requirement boilerplate to express functional requirement sentence. Finally, this 

research only selects 5 SRS documents that have less than 500 sentences and have 

consistency in system naming. The rationalizations are needed to accommodate 

manual checking for the analysis presented in Figure 4 and five selected SRS 

documents are presented in Table 1. 

Table 1. Selected SRS Documents  

No 
SRS Document Title Number of 

Sentences 

1 Crime & Criminal Tracking Network and 

Systems (CCTNS) 

431 

2 Digital Home System (DH) 404 

3 e-Store 322 

4 Laboratory Information System (LIS) 314 

5 Puget Sound Enhancements (Puget) 495 

4.3. Proposed Solution Framework 
 

The feature extraction automation framework for SPL from SRS documents is 

the basic conceptual structure used in software development in this study. In this 

framework, the SRS dataset which consists of a complete SRS document is extracted 

to produce raw text, then the raw text is pre-processed to eliminate certain sentence 

variations noises and ready to be processed with NLP. NLP in this framework uses 

the SpaCy NLP library with a pre-trained model. The first process in NLP is 

sentencizer and tokenizer to break up preprocessed text documents into sentences 

consisting of tokens (separated words), while noun-chunking is used to recognize 

phrases so that they are not considered as separated words. The next process is 

implementing the POS tagging sequence pattern to automatically identify requirement 

sentences. Through a list of requirement sentences, an abstraction is needed to obtain 

system features. In this study, the word dependency parsing rules are proposed to 

retrieve only certain words that indicate the system function from each requirement 

sentence. An overview of the feature extraction automation framework from the SRS 

document is presented in Figure 5. 

 

4.4. Text Pre-Processing  
 

After obtaining text data from the SRS document, there are several preliminary 

processes for the text data to be processed properly by the NLP engine. In this 

process, variations in requirement boilerplate sentence implementations are simplified 

to facilitate the main verb recognition for further NLP processing. But, in this stage, 

these preprocesses are applied to all sentences in the text data. Sentence simplification 

rules are illustrated in Figure 6. 
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Figure 5. Feature Extraction Automation Framework from SRS Document 

 

 
Figure 6. Text Simplification Applied on Text Document Illustration 

 

4.5. Extracting Requirement Sentences from SRS Documents 

Requirement sentences written with requirement boilerplate template has a 

sequence of special words or types of words, which can be used as a reference in 

determining patterns to recognize them. In this research, there are 2 (two) POS tag 

modifications, namely SYSNOUN as a system word marker or phrase containing the 

system word, and KEYVERB as a keyword marker for the keyword of requirement 
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boilerplate, i.e., the verb “shall”. The illustration of the POS tagging result is 

presented in Figure 7. 

 

The system   shall   show   error message 

 

    SYSNOUN   KEYVERB  VERB       NOUN 

Figure 7. POS Tagging Illustration 

Based on 5 (five) SRS documents selected from the PURE dataset, Crime & 

Criminal Tracking Network and Systems (CCTNS), Digital Home System (DH), e-

Store, Laboratory Information System (LIS), and Puget Sound Enhancements (Puget), 

existing structure in requirement sentences of each document make it possible to 

formulate 5 (five) POS tagging sequence patterns as follows: 

Pattern 1. SYSNOUN-KEYVERB-VERB-NOUN 

This pattern is used to identify requirement sentences structure as follows: 

 The system shall maintain the audit trail for as long as required. [CCTNS] 

 The system shall authenticate user credentials to view the profile. [e-Store] 

 The system shall log an error message to the external data file. [LIS] 

 

Pattern 2. SYSNOUN-KEYVERB-VERB-ADP-NOUN 

This pattern is used to identify requirement sentences structure as follows: 

 The system shall run on multiple browsers. [CCTNS] 

 The e-store system shall communicate to credit management system. [e-Store] 

 The system shall clear up data if the user chooses to click the cancel button. 

[LIS] 

 

Pattern 3. SYSNOUN-KEYVERB-ADV-VERB-NOUN 

This pattern is used to identify requirement sentences structure as follows: 

 The system shall optionally allow user to print the invoice [e-Store] 

 

Pattern 4. SYSNOUN-KEYVERB-ADV-VERB-ADP-NOUN 

This pattern is used to identify requirement sentences structure as follows: 

 The system shall never include in the search result list any record which the user 

does not have the right to access. [CCTNS] 

 The system shall automatically log out all customers after a period of inactivity. 

[e-Store] 

 

Pattern 5. SYSNOUN-KEYVERB-PART-VERB-NOUN 

This pattern is used to identify requirement sentences structure as follows: 

 The system shall not include such cases in any count of search results, this level 

of security is normally appropriate for cases dealing with matters such as 

national security. [CCTNS] 

 the system shall not leave any cookies on the customer’s computer containing 

any of the user’s confidential information. [e-Store]   

In this research, we limit the identification only for system perspective 

requirement sentences, while the user perspective is excluded at the moment. Passive 
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form sentences also excluded since we follow the requirement boilerplates syntax 

guide that shown active form sentences only. 

 

4.6. Extracting Features from Requirement Sentences  

After the list of requirement sentences has been successfully extracted from the 

SRS document, further processing is needed to obtain an abstraction from the system 

functionality that is described in every sentence. Abstraction in a requirement 

boilerplate sentence is a combination of words or phrases that adequately represent 

the meaning of the whole sentence in the context of system functionality. This 

research assumes that there are no redundancies that need to be eliminated if several 

requirements sentences represent the same feature, one to one relationship between 

feature and requirement sentence is applied in this study. 

In this stage, word dependency parsing is used to determine the position of a 

word or phrase in a sentence. The relation to word dependency parsing by spaCy is 

illustrated in Figure 8. 

 

Figure 8. Word Dependency Parsing by SpaCy NLP Illustration 

For every parsed sentence, it will always show the process verb of requirement 

sentences as a root of the dependency, which means that the process verb has no 

dependency on another word. While the other words are dependent on to process verb 

as a root. Based on the dependency parsing results for various requirement sentences 

in the dataset, there are 4 (four) rules that can be formulated to extract their features as 

follows: 

Rule 1. Verb of Root (dep: root) + Direct Object Noun of Root (dep: dobj) 

This rule is used to identify requirement sentences structure as follow: 

The system shall show error message to user.  

Rule 2. Verb of Root (dep: root) + Preposition (prep) + Prepositioned Object Noun 

of Root (dep: pobj) 

This rule is used to identify requirement sentences structure as follow: 

The system shall provide for authentication to user. 

Rule 3. (Rule 1 OR Rule 2) + Conjunctive (dep: conj) + Coordinating Conjunctives 

Noun (dep: cc) 

This rule is used to identify requirement sentences structure as follow: 

The system shall show warning and confirmation message. 

Rule 4. Negative Word (dep: neg) + (Rule 1 OR Rule 2 OR Rule 3)   

This rule is used to identify requirement sentences structure as follow: 

The system shall not leave any cookies from browsing activity. 
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5. Results 

After implementing sequence POS tagging patterns on SRS documents, this 

research automatically produces requirement sentences that are compared with actual 

requirement sentences from manual extraction. Precision and recall are computed 

afterward based on the number of results that are True Positive (TP), False Positive 

(FP), and False Negative (FN) from each SRS document processing. The comparison 

and accuracy calculations are presented in Table 2. 

Table 2. Requirement Sentence Extraction Result Comparison  

No SRS  Actual Extracted TP FP FN Precision Recall 

1 CCTNS 53 37 35 2 20 0.95 0.64 

2 DH 24 33 21 12 5 0.64 0.81 

3 e-Store 96 85 87 0 11 1.00 0.89 

4 LIS 27 26 23 3 5 0.88 0.82 

5 Puget 38 36 34 3 7 0.92 0.83 

 

Feature extraction rules are applied on list requirement sentences that are already 

generated from the previous extraction as a continuous process without any 

refinements or intervention. Therefore, accuracy measurement for feature extraction is 

only presented as the percentage that shows the success rate of proposed rules to 

automatically extract features from requirement sentences. Features extraction results 

are presented in Table 3. 

Table 3. Feature Extraction Result  

No SRS  Extracted 

Requirement 

Sentences 

Extracted 

Feature 

Success 

Rate 

(%) 

1 CCTNS 37 30 81.08 

2 DH 33 27 81.82 

3 e-Store 85 56 65.12 

4 LIS 26 23 88.46 

5 Puget 36 27 75.00 

 

6. Discussion 

The findings of this study can be interpreted from the requirement sentence 

extraction result comparison in Table 2. This study proves the highest precision when 

applied to the e-Store SRS document with 100% precision value. It means that the 

proposed method, when it is applied to the e-Store SRS document, did not fail to 

exclude non-requirement sentences in the extraction process. In the same document, 

this study shows the highest recall value of 89%. It means that the proposed method 

for the e-Store SRS document succeeded in extracting 89% of all the requirement 

sentences that should be obtained. While for the feature extraction results, the success 

rate varies from the lowest 65% value to 88% value. 

This study also found 64% precision value of Digital Home (DH) SRS document 

that shows 36% of false-positive (FP) extraction results and 64% recall value of 

Crime & Criminal Tracking Network and Systems (CCTNS) SRS document that 

shows 36% of false-negative (FN) extraction results. The cause of this extraction’s 

failures can be identified to see the limitation of the proposed method. The examples 
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of these negative findings are presented in Table 4. 

Table 4. Requirement Sentence Extraction Failure Example Analysis 

Sentence Result Cause 

The system owner director shall provide 

management and communication support 

(DH) 

FP Using of system phrase 

and boilerplate structure  

The development of the dh system shall use 

methods and techniques such as … (DH) 

FP Using of system phrase 

and boilerplate structure 

The user interfaces of the system shall comply 

with standard iso 9241 (CCTNS) 

FP Using of system phrase 

and boilerplate structure 

The System must not exceed <xx> hours per 

<rolling three months period> (CCTNS) 

FN Using of symbol that 

not recognized 

The System must be able to capture and store 

violations (CCTNS) 

FN Using conjunction of 

two process verbs 

The system should be developed to be 

deployed in a 3-tier datacenter architecture 

(CCTNS) 

FN Using of passive 

sentence structure 

Another finding of this research shows lowest feature extraction result success 

rate value of 65% on the e-Store and 75% on Puget SRS document. The extraction 

failure analysis is presented in Table 5. 

Table 5. Feature Extraction Failure Example Analysis 

Requirement Sentence Feature Cause 

The system shall enable user to 

navigate between the search results 

(e-store) 

Enable 

user 

User perspective that is written 

similarly with system perspective 

The system shall enable the user to 

enter their reviews and ratings (e-

store) 

Enable 

the user 

User perspective that is written 

similarly with system perspective 

The e store system shall 

communicate to credit management 

system (e-store) 

commu

nicate 
“to credit” is detected as verb 

The system shall open a pop-up 

window displaying information (e-

store) 

open 
“a pop-up window” is not 

detected a noun phrase 

The system shall allow actors to 

delete recorded clips (puget) 
allow 

User perspective that is written 

similarly with system perspective 

These findings show the limitations of the proposed framework on certain cases, 

mostly caused by requirement sentence inconsistency and NLP library limitation on 

recognizing the words that have the same form for noun and verb or certain noun 

phrases that are failed to be recognized. But with requirement boilerplate template 

usage consistency for requirement sentence writing in the SRS document and 

avoiding the use of words that can cause ambiguity, the proposed method will work as 

expected. 

7. Conclusion 

This study gives a logical answer for all the research questions stated in 

subsection 4.1. The first research question about what techniques need to be 
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constructed to automatically extract features directly from the SRS document is 

answered by the proposed framework of automatic feature extraction using the NLP 

approach that is presented in Figure 5. Second research question about what rules of 

processing that need to be formulated to automatically extract features directly from 

the SRS document, is answered by sequence POS tagging patterns and word 

dependency parsing rules that are presented in subsection 4.5 and 4.6. The third 

research question on accuracy measurement is presented in the result section. First 

accuracy measurement on requirement sentence extraction from SRS document with 

precision value in the range of 64% to 100% and recall value in the range 64% to 

89%. Second accuracy measurement on feature extraction from previously extracted 

requirement sentences with a success rate from 65% to 88%. 

For the next study, technique extension is needed to be done to obtain further 

stage on domain engineering of SPLE. Classification on the list of features is needed 

to build a feature catalog as an intermediate artifact to build the feature model (FM). 

Mandatory features and optional features are also needed to be distinguished. Since 

there are many studies on automatic or semi-automatic feature model generation, so 

this research can be combined to produce a complete solution to automatically extract 

feature model from the SRS document directly. 
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