

Journal of Information Technology and Computer Science
Volume 5, Number 3, Desember 2020, pp. 279-292

Journal Homepage: www.jitecs.ub.ac.id

Automated Features Extraction from Software

Requirements Specification (SRS) Documents as The Basis

of Software Product Line (SPL) Engineering

M Syauqi Haris1 , Tri Astoto Kurniawan2 , Fatwa Ramdani3
1,2,3Computer Science Faculty of Brawijaya University Malang

1syauqi@student.ub.ac.id, 2 triak@ub.ac.id, 3 fatwaramdani@ub.ac.id

Received 13 July 2020; accepted 14 Desember 2020

Abstract. Extractive Software Product Line Engineering (SPLE) puts features

on the foremost aspect in domain analysis that needs to be extracted from the
existing system's artifact. Feature in SPLE, which is closely related to system
functionality, has been previously studied to be extracted from source code,

models, and various text documents that exist along the software development
process. Source code, with its concise and normative standard, has become the
most focused target for feature extraction source on many kinds of research.

However, in the software engineering principle, the Software Requirements
Specification (SRS) document is the basis or main reference for system
functionality conformance. Meanwhile, previous studies of feature extraction
from text document are conducted on a list of functional requirement sentences

that have been previously prepared, not literally SRS as a whole document. So,
this research proposes direct processing on the SRS document that uses
requirement boilerplates for requirement sentence statement. The proposed

method uses Natural Language Processing (NLP) approach on the SRS
document. Sequence Part-of-Speech (POS) tagging pattern is used for
automatic requirement sentence identification and extraction. The features are

acquired afterward from extracted requirement sentences automatically using
the word dependency parsing rules. Besides, mostly the previous studies about
feature extraction were using non-public available SRS document that remains

classified or not accessible, so this work uses selected SRS from publicly
available SRS dataset to add reproducible research value. This research proves
that requirement sentence extraction directly from the SRS document is viable

with the precision value from 64% to 100% and recall value from 64% to 89%.
While features extraction from extracted requirement sentences has a success
rate from 65% to 88%.

Keywords: Software Product Line, Feature Extraction, Natural Language
Processing

1. Introduction

Software Product Lines (SPL) arise as a new concept in software reuse [1]. It is

also considered as a proven paradigm strategy on software reuse that makes it

possible for the industry to reduce development costs up to 61%, shorten time-to-

market but still maintain the product quality [2]. More than 50% of software industry

practitioners just realized the importance of SPL after producing several products with

an ad-hoc or single system development [3]. This condition, when the developer tries

280 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

to evolve those existing products into the Software Product Line (SPL), is called the

extractive SPL method. In this process, the SPL core asset base will be built from the

features that are extracted from existing products, while the feature itself is defined as

a logical unit of behavior that is determined by a set of functional requirements [4] or

abstraction from system functionality [5].

Studies on the feature extraction from existing systems mostly use the source code

as the object or input of the extraction process [6][7][8][9][10][11]. While other

studies also conducted to use models including a class diagram and use case diagram

as the objects for the extraction process [12][13]. However, most software developer

only measures their product quality on the released software product or the

implementation result regardless of the original requirement [14], Therefore, software

feature extraction from specification document is more suitable based on the software

engineering perspective rather than model or source code to acquire the more valid

feature. This is because the specification document is the basis of the validation and

verification of system functionality in the software development process [15][16].

Currently, most studies on SPL feature extraction from Software Requirement

Specification (SRS) document were processing the list of requirements that have been

previously prepared, not SRS as a whole document [17][18][19]. As such, this method

still needs expert intervention to manually separate requirement sentences from the

SRS document that might be tedious and error-prone. In this research, we process

directly from SRS documents that use requirement boilerplate to construct that

requirement statements. Such requirements provide specific patterns to be processed

using Natural Language Processing (NLP) approach.

This article is constructed using the following sections. Section 2 will situate

related works that were previously conducted to show the state of the art in this

research area. Section 3 will explain the methodology of this research and followed by

section 4 that shows the research results. Section 5 will discuss the result

measurement and opinion from the researcher to explain the logical manner. The last

section will conclude this research along with the future work planning and

suggestions for other researchers.

2. Related Works

Previous three studies on feature extraction from SRS document process

requirement statement sentences that were already broken down into the list as they

appear in the document. First, the statistical approach Term Frequency and Inverse

Document Frequency (TF/IDF) is used in feature mining from the SRS document’s

functional requirement sentences. The research focused on several Mapping Rules

(MRs) to identify the Semantic Model (SM) from each functional requirement

sentence [17]. Second, Feature and Feature Relation Extraction (FFRE) tool for

Eclipse plugin are also introduced to assist the feature model extraction process from

the SRS document. This tool use NLP processing to identify actor, action, and object

from each requirement sentence and heuristic processing afterward to determine

which features are mandatory and which are optional [18]. The third research was

done by collaborative researchers between academic and industry practitioners. The

feature is defined as a higher-level abstraction of requirements or specifically as a

cluster of requirements. In their framework, the extraction method for feature

candidates is Latent Semantic Analysis (LSA) and Vector Space Model (VSM) while

further classification is conducted using Hierarchical Agglomerative Clustering

(HAC) [20].

M Syauqi Haris et al., Automated Features Extraction ...281

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Feature extraction researches working on natural language document were also

done on product descriptions or brochures. First research initialized with the web-

scrapping process on Softpedia for antivirus software, meaningful terms are then

acquired using the TF-IDF method. The classification process is done afterward using

a two-stage Spherical k-Means (SPK-Means) clustering algorithm to construct feature

candidates, while the Frequent Pattern (FP) growth algorithm is used for feature

naming [21]. Second research extract software feature commonality and variability

mining on domain-specific natural language documents. The extraction process are

done automatically using contrastive analysis of Natural Language Processing (NLP)

approach to identify single and multi-word domain-specific terms [22].

Another Information retrieval (IR) with a system-oriented approach has been

proposed for automatic identification of functional requirements from SRS

documents. Orthogonal Variability Model (OVM) and Filmore's case theory are used

to extract and characterize functional requirements. The functional Requirement

Profile (FRP) concept is introduced in this research as a domain analysis method to

give quick insight into system functionalities. FRP itself is represented as a “verb-do”

pair of words that state user-visible system functionality. In the extraction process,

this research method only able to parse the SRS document that already complies with

the IEEE-830 document structure. This standardization enables parsing only on the

specific section of the SRS document [23].

3. Basic Notions

3.1. SRS Documents and Requirement Boilerplate

Consistent use of language in the SRS writing will make a statement of

requirements easy to understand and identify. A simple example is a use of the word

"shall" which shows the existence of a statement of a requirement in a sentence.

Another example is the choice of the words "shall", "should", and "may" which

express different levels of priority to a requirement [4]. For determining the

syntactical structure of a single requirement, the syntactical requirements template as

a sentence blueprint was introduced [24] and illustrated as seen in Figure 1. This

template is now commonly referred to as requirement boilerplates. While boilerplates

itself mean the grammatical structure that is formulated to provide specific patterns to

avoid complex and inconsistent patterns [25]. Furthermore, the usage of boilerplates

for requirements will facilitate automated document analysis using Natural Language

Processing (NLP).

Figure 1. Requirements Boilerplate Template

282 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

3.2. Feature on Extractive Software Product Line (SPL)

Feature Model (FM) is a notation that is commonly used as an artifact resulting

from the domain analysis process. Feature Model Diagram is considered capable of

describing the similarities and variations of a set of features that can be applied to

SPL [26]. The common process of making FM is manually done by an expert based

on existing software product descriptions, whether structured or not. This process is

error-prone and time-consuming [27]. Automatic FM diagram formation has been

proposed in a study based on a feature catalog extracted from source code [8].

The extractive software product line approach using the requirements engineering

(RE) and natural language as a source or object extraction that also called the

requirements reuse (RR) [23]. The results of the requirements reuse process can be a

list of features or a grouping of features from a single software product. In the context

of SPL, the extraction results can be in the form of feature models (FM) of several

software products as SPL core asset base, although in the process are still semi-

automatic [19] [28]. The illustration of the extractive software product line is

illustrated in Figure 2.

Existing System 1

Existing System 2

Existing System 3

SPL Core Asset base

Product Configuration

New System 1

New System 2

New System 3

Figure 2. Extractive SPL Illustration

3.3. Natural Language Processing (NLP) for Information

Extraction

Currently, NLP is widely used in studies working on human language documents,

since there are many public NLP libraries to use i.e. Google SyntaxNet, Stanford

CoreNLP, NLTK Phyton library, and spaCy [29]. NLP library provides several

pipelines to process the documents as the input are illustrated in Figure 3. Sentencizer

can split text document to sentences series, Tokenizer can split document or sentence

to token series, token itself can be individual word or words phrase when text

chunking method is applied, Part-of-Speech (POS) tag is code tagging for every token

identified, it can be noun, verb, determiner, adjective, adverb, etc [25]. NLP library

also can have a pre-trained model to add more capability on Named Entity Recognizer

(NER) to automatically identify detected entity as person, organization, nation, etc. It

also can have Dependency Parser for text chunking (phrase detection) or sentence

boundary detection. Both NER and dependency parser is available in the spaCy NLP

library [30].

M Syauqi Haris et al., Automated Features Extraction ...283

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Figure 3. NLP Process Pipeline for Information Retrieval from Text Document

[31]

At the moment, there are few limitations in published researches on feature

extraction from natural language documents, i.e. unavailable tools for evaluation,

restricted or limited input, irrelevant feature naming, non-reproducible result, and

domain engineer intervention in the process [32]. While this research is aimed to

produce a tool for automatically extracting software features directly from SRS

documents without any human intervention in the process. The tool will be applied

and tested using selected SRS from the Public Requirement Engineering (PURE)

dataset [33] to justify its correctness.

4. Methodology

4.1. Research Questions

The research questions in this research are established as follows:

 RQ 1: What approach or technique needs to be constructed to automatically

extract features directly from the SRS document?

 RQ 2: What rules of processing that need to be formulated to automatically

extract requirement sentences and features?

 RQ 3: How accurate is the automated extraction method?

4.2. Data Acquisition

SRS documents that are used in this research selected from Public Requirement

Engineering (PURE) dataset that is published in 2017 and publicly available on the

internet [33]. Since this research focuses on automatic feature extraction from the

SRS document, so this dataset is suitable to be used. Rationalization is also made to

select certain documents that are possible to be checked manually for the analysis

described in Figure 4.

Figure 4. Dataset Rationalization Illustration

284 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Based on 79 SRS documents in the dataset, there are 13 documents consistently

using requirement boilerplate to express functional requirement sentence. Finally, this

research only selects 5 SRS documents that have less than 500 sentences and have

consistency in system naming. The rationalizations are needed to accommodate

manual checking for the analysis presented in Figure 4 and five selected SRS

documents are presented in Table 1.

Table 1. Selected SRS Documents

No
SRS Document Title Number of

Sentences

1 Crime & Criminal Tracking Network and

Systems (CCTNS)

431

2 Digital Home System (DH) 404

3 e-Store 322

4 Laboratory Information System (LIS) 314

5 Puget Sound Enhancements (Puget) 495

4.3. Proposed Solution Framework

The feature extraction automation framework for SPL from SRS documents is

the basic conceptual structure used in software development in this study. In this

framework, the SRS dataset which consists of a complete SRS document is extracted

to produce raw text, then the raw text is pre-processed to eliminate certain sentence

variations noises and ready to be processed with NLP. NLP in this framework uses

the SpaCy NLP library with a pre-trained model. The first process in NLP is

sentencizer and tokenizer to break up preprocessed text documents into sentences

consisting of tokens (separated words), while noun-chunking is used to recognize

phrases so that they are not considered as separated words. The next process is

implementing the POS tagging sequence pattern to automatically identify requirement

sentences. Through a list of requirement sentences, an abstraction is needed to obtain

system features. In this study, the word dependency parsing rules are proposed to

retrieve only certain words that indicate the system function from each requirement

sentence. An overview of the feature extraction automation framework from the SRS

document is presented in Figure 5.

4.4. Text Pre-Processing

After obtaining text data from the SRS document, there are several preliminary

processes for the text data to be processed properly by the NLP engine. In this

process, variations in requirement boilerplate sentence implementations are simplified

to facilitate the main verb recognition for further NLP processing. But, in this stage,

these preprocesses are applied to all sentences in the text data. Sentence simplification

rules are illustrated in Figure 6.

M Syauqi Haris et al., Automated Features Extraction ...285

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Figure 5. Feature Extraction Automation Framework from SRS Document

Figure 6. Text Simplification Applied on Text Document Illustration

4.5. Extracting Requirement Sentences from SRS Documents

Requirement sentences written with requirement boilerplate template has a

sequence of special words or types of words, which can be used as a reference in

determining patterns to recognize them. In this research, there are 2 (two) POS tag

modifications, namely SYSNOUN as a system word marker or phrase containing the

system word, and KEYVERB as a keyword marker for the keyword of requirement

Spacy NLP
SRS Dataset

Text Extraction

Spacy Pretrained

Model

List of

Requirement

Sentence

POS Tagging
Sequence POS

Tagging Patterns

Sentencizer, Noun

Chunking, and Tokenizer

Word Dependency

Parsing

Word Dependency

Parsing Rules

Text

Preprocessing

Preprocessing

Rules

List of

Features

Raw Text

Preprocessed

Text Document

Text Sentences

with Noun-

Chunked Token

Legend:

Ready to use

Process Database
Data Proposed

Rules

Proposed

Process

286 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

boilerplate, i.e., the verb “shall”. The illustration of the POS tagging result is

presented in Figure 7.

The system shall show error message

 SYSNOUN KEYVERB VERB NOUN

Figure 7. POS Tagging Illustration

Based on 5 (five) SRS documents selected from the PURE dataset, Crime &

Criminal Tracking Network and Systems (CCTNS), Digital Home System (DH), e-

Store, Laboratory Information System (LIS), and Puget Sound Enhancements (Puget),

existing structure in requirement sentences of each document make it possible to

formulate 5 (five) POS tagging sequence patterns as follows:

Pattern 1. SYSNOUN-KEYVERB-VERB-NOUN

This pattern is used to identify requirement sentences structure as follows:

 The system shall maintain the audit trail for as long as required. [CCTNS]

 The system shall authenticate user credentials to view the profile. [e-Store]

 The system shall log an error message to the external data file. [LIS]

Pattern 2. SYSNOUN-KEYVERB-VERB-ADP-NOUN

This pattern is used to identify requirement sentences structure as follows:

 The system shall run on multiple browsers. [CCTNS]

 The e-store system shall communicate to credit management system. [e-Store]

 The system shall clear up data if the user chooses to click the cancel button.

[LIS]

Pattern 3. SYSNOUN-KEYVERB-ADV-VERB-NOUN

This pattern is used to identify requirement sentences structure as follows:

 The system shall optionally allow user to print the invoice [e-Store]

Pattern 4. SYSNOUN-KEYVERB-ADV-VERB-ADP-NOUN

This pattern is used to identify requirement sentences structure as follows:

 The system shall never include in the search result list any record which the user

does not have the right to access. [CCTNS]

 The system shall automatically log out all customers after a period of inactivity.

[e-Store]

Pattern 5. SYSNOUN-KEYVERB-PART-VERB-NOUN

This pattern is used to identify requirement sentences structure as follows:

 The system shall not include such cases in any count of search results, this level

of security is normally appropriate for cases dealing with matters such as

national security. [CCTNS]

 the system shall not leave any cookies on the customer’s computer containing

any of the user’s confidential information. [e-Store]

In this research, we limit the identification only for system perspective

requirement sentences, while the user perspective is excluded at the moment. Passive

M Syauqi Haris et al., Automated Features Extraction ...287

p-ISSN: 2540-9433; e-ISSN: 2540-9824

form sentences also excluded since we follow the requirement boilerplates syntax

guide that shown active form sentences only.

4.6. Extracting Features from Requirement Sentences

After the list of requirement sentences has been successfully extracted from the

SRS document, further processing is needed to obtain an abstraction from the system

functionality that is described in every sentence. Abstraction in a requirement

boilerplate sentence is a combination of words or phrases that adequately represent

the meaning of the whole sentence in the context of system functionality. This

research assumes that there are no redundancies that need to be eliminated if several

requirements sentences represent the same feature, one to one relationship between

feature and requirement sentence is applied in this study.

In this stage, word dependency parsing is used to determine the position of a

word or phrase in a sentence. The relation to word dependency parsing by spaCy is

illustrated in Figure 8.

Figure 8. Word Dependency Parsing by SpaCy NLP Illustration

For every parsed sentence, it will always show the process verb of requirement

sentences as a root of the dependency, which means that the process verb has no

dependency on another word. While the other words are dependent on to process verb

as a root. Based on the dependency parsing results for various requirement sentences

in the dataset, there are 4 (four) rules that can be formulated to extract their features as

follows:

Rule 1. Verb of Root (dep: root) + Direct Object Noun of Root (dep: dobj)

This rule is used to identify requirement sentences structure as follow:

The system shall show error message to user.

Rule 2. Verb of Root (dep: root) + Preposition (prep) + Prepositioned Object Noun

of Root (dep: pobj)

This rule is used to identify requirement sentences structure as follow:

The system shall provide for authentication to user.

Rule 3. (Rule 1 OR Rule 2) + Conjunctive (dep: conj) + Coordinating Conjunctives

Noun (dep: cc)

This rule is used to identify requirement sentences structure as follow:

The system shall show warning and confirmation message.

Rule 4. Negative Word (dep: neg) + (Rule 1 OR Rule 2 OR Rule 3)

This rule is used to identify requirement sentences structure as follow:

The system shall not leave any cookies from browsing activity.

288 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

5. Results

After implementing sequence POS tagging patterns on SRS documents, this

research automatically produces requirement sentences that are compared with actual

requirement sentences from manual extraction. Precision and recall are computed

afterward based on the number of results that are True Positive (TP), False Positive

(FP), and False Negative (FN) from each SRS document processing. The comparison

and accuracy calculations are presented in Table 2.

Table 2. Requirement Sentence Extraction Result Comparison

No SRS Actual Extracted TP FP FN Precision Recall

1 CCTNS 53 37 35 2 20 0.95 0.64

2 DH 24 33 21 12 5 0.64 0.81

3 e-Store 96 85 87 0 11 1.00 0.89

4 LIS 27 26 23 3 5 0.88 0.82

5 Puget 38 36 34 3 7 0.92 0.83

Feature extraction rules are applied on list requirement sentences that are already

generated from the previous extraction as a continuous process without any

refinements or intervention. Therefore, accuracy measurement for feature extraction is

only presented as the percentage that shows the success rate of proposed rules to

automatically extract features from requirement sentences. Features extraction results

are presented in Table 3.

Table 3. Feature Extraction Result

No SRS Extracted

Requirement

Sentences

Extracted

Feature

Success

Rate

(%)

1 CCTNS 37 30 81.08

2 DH 33 27 81.82

3 e-Store 85 56 65.12

4 LIS 26 23 88.46

5 Puget 36 27 75.00

6. Discussion

The findings of this study can be interpreted from the requirement sentence

extraction result comparison in Table 2. This study proves the highest precision when

applied to the e-Store SRS document with 100% precision value. It means that the

proposed method, when it is applied to the e-Store SRS document, did not fail to

exclude non-requirement sentences in the extraction process. In the same document,

this study shows the highest recall value of 89%. It means that the proposed method

for the e-Store SRS document succeeded in extracting 89% of all the requirement

sentences that should be obtained. While for the feature extraction results, the success

rate varies from the lowest 65% value to 88% value.

This study also found 64% precision value of Digital Home (DH) SRS document

that shows 36% of false-positive (FP) extraction results and 64% recall value of

Crime & Criminal Tracking Network and Systems (CCTNS) SRS document that

shows 36% of false-negative (FN) extraction results. The cause of this extraction’s

failures can be identified to see the limitation of the proposed method. The examples

M Syauqi Haris et al., Automated Features Extraction ...289

p-ISSN: 2540-9433; e-ISSN: 2540-9824

of these negative findings are presented in Table 4.

Table 4. Requirement Sentence Extraction Failure Example Analysis

Sentence Result Cause

The system owner director shall provide

management and communication support

(DH)

FP Using of system phrase

and boilerplate structure

The development of the dh system shall use

methods and techniques such as … (DH)

FP Using of system phrase

and boilerplate structure

The user interfaces of the system shall comply

with standard iso 9241 (CCTNS)

FP Using of system phrase

and boilerplate structure

The System must not exceed <xx> hours per

<rolling three months period> (CCTNS)

FN Using of symbol that

not recognized

The System must be able to capture and store

violations (CCTNS)

FN Using conjunction of

two process verbs

The system should be developed to be

deployed in a 3-tier datacenter architecture

(CCTNS)

FN Using of passive

sentence structure

Another finding of this research shows lowest feature extraction result success

rate value of 65% on the e-Store and 75% on Puget SRS document. The extraction

failure analysis is presented in Table 5.

Table 5. Feature Extraction Failure Example Analysis

Requirement Sentence Feature Cause

The system shall enable user to

navigate between the search results

(e-store)

Enable

user

User perspective that is written

similarly with system perspective

The system shall enable the user to

enter their reviews and ratings (e-

store)

Enable

the user

User perspective that is written

similarly with system perspective

The e store system shall

communicate to credit management

system (e-store)

commu

nicate
“to credit” is detected as verb

The system shall open a pop-up

window displaying information (e-

store)

open
“a pop-up window” is not

detected a noun phrase

The system shall allow actors to

delete recorded clips (puget)
allow

User perspective that is written

similarly with system perspective

These findings show the limitations of the proposed framework on certain cases,

mostly caused by requirement sentence inconsistency and NLP library limitation on

recognizing the words that have the same form for noun and verb or certain noun

phrases that are failed to be recognized. But with requirement boilerplate template

usage consistency for requirement sentence writing in the SRS document and

avoiding the use of words that can cause ambiguity, the proposed method will work as

expected.

7. Conclusion

This study gives a logical answer for all the research questions stated in

subsection 4.1. The first research question about what techniques need to be

290 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

constructed to automatically extract features directly from the SRS document is

answered by the proposed framework of automatic feature extraction using the NLP

approach that is presented in Figure 5. Second research question about what rules of

processing that need to be formulated to automatically extract features directly from

the SRS document, is answered by sequence POS tagging patterns and word

dependency parsing rules that are presented in subsection 4.5 and 4.6. The third

research question on accuracy measurement is presented in the result section. First

accuracy measurement on requirement sentence extraction from SRS document with

precision value in the range of 64% to 100% and recall value in the range 64% to

89%. Second accuracy measurement on feature extraction from previously extracted

requirement sentences with a success rate from 65% to 88%.

For the next study, technique extension is needed to be done to obtain further

stage on domain engineering of SPLE. Classification on the list of features is needed

to build a feature catalog as an intermediate artifact to build the feature model (FM).

Mandatory features and optional features are also needed to be distinguished. Since

there are many studies on automatic or semi-automatic feature model generation, so

this research can be combined to produce a complete solution to automatically extract

feature model from the SRS document directly.

References

[1] I. Sommerville, Software Engineering 10th Edition, Tenth Edition. Harlow:

Pearson Education Limited, 2016.

[2] S. Al Busaidi and N. Kraiem, “Using Software Product Line Application in

Enterprise Resources Planning Systems Systematic Literature Review,”

Comput. Eng. Inf. Technol., vol. 06, no. 03, 2017.

[3] T. Berger et al., “A survey of variability modeling in industrial practice,”

Proc. Seventh Int. Work. Var. Model. Software-intensive Syst., vol. January,

pp. 1–8, 2013.

[4] J. Dick, E. Hull, and K. Jackson, Requirements Engineering, Fourth Edi.

Cham: Springer International Publishing, 2017.

[5] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software

Product Lines. Springer-Verlag Berlin Heidelberg, 2013.

[6] R. AL-Msie’Deen, M. Huchard, A. D. Seriai, C. Urtado, and S. Vauttier,

“Reverse engineering feature models from software configurations using

formal concept analysis,” CEUR Workshop Proc., vol. 1252, pp. 95–106,

2014.

[7] F. Benbassat, P. Borba, and L. Teixeira, “Safe evolution of software product

lines: Feature extraction scenarios,” Proc. - 2016 10th Brazilian Symp.

Components, Archit. Reuse Software, SBCARS 2016, pp. 11–20, 2016.

[8] M. A. Laguna and Y. Crespo, “A systematic mapping study on software

product line evolution: From legacy system reengineering to product line

refactoring,” Sci. Comput. Program., vol. 78, no. 8, pp. 1010–1034, 2013.

[9] E. Stankov, M. Jovanov, and A. M. Bogdanova, “Source code similarity

detection by using data mining methods,” 35th Int. Conf. Inf. Technol.

Interfaces, ITI 2013, pp. 257–262, 2013.

[10] C. Kastner, A. Dreiling, and K. Ostermann, “Variability mining: Consistent

semi-automatic detection of product-line features,” IEEE Trans. Softw. Eng.,

M Syauqi Haris et al., Automated Features Extraction ...291

p-ISSN: 2540-9433; e-ISSN: 2540-9824

vol. 40, no. 1, pp. 67–82, 2014.

[11] W. Fenske, J. Meinicke, S. Schulze, S. Schulze, and G. Saake, “Variant-

preserving refactorings for migrating cloned products to a product line,”

SANER 2017 - 24th IEEE Int. Conf. Softw. Anal. Evol. Reengineering, pp.

316–326, 2017.

[12] W. K. G. Assunção, S. R. Vergilio, and R. E. Lopez-Herrejon, “Automatic

extraction of product line architecture and feature models from UML class

diagram variants,” Inf. Softw. Technol., vol. 117, no. September, 2020.

[13] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Implementation and

evaluation of an approach for extracting feature models from documented

UML use case diagrams,” Proc. ACM Symp. Appl. Comput., vol. 13-17-Apri,

pp. 1602–1609, 2015.

[14] R. S. Pressman and B. R. Maxim, Software Engineering - A Practitioner’s

Approach, Ninth Edition. New York: McGraw-Hill Education, 2020.

[15] R. F. Schmidt, Software Engineering: Architecture-driven Software

Development, vol. 53, no. 9. Morgan Kaufmann, 2013.

[16] A. Mili and F. Tchier, Software Testing Concepts and Operations. New

Jersey: John Wiley & Sons, 2015.

[17] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Mining feature models from

functional requirements,” Comput. J., vol. 59, no. 12, pp. 1784–1804, 2016.

[18] M. Hamza and R. J. Walker, “Recommending features and feature

relationships from requirements documents for software product lines,” Proc.

- 4th Int. Work. Realiz. Artif. Intell. Synerg. Softw. Eng. RAISE 2015, pp. 25–

31, 2015.

[19] N. H. Bakar, Z. M. Kasirun, and N. Salleh, “Feature extraction approaches

from natural language requirements for reuse in software product lines: A

systematic literature review,” J. Syst. Softw., vol. 106, pp. 132–149, 2015.

[20] V. Alves et al., “An exploratory study of information retrieval techniques in

domain analysis,” Proc. - 12th Int. Softw. Prod. Line Conf. SPLC 2008, pp.

67–76, 2008.

[21] J. M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, and P.

Heymans, “Feature model extraction from large collections of informal

product descriptions,” 2013 9th Jt. Meet. Eur. Softw. Eng. Conf. ACM

SIGSOFT Symp. Found. Softw. Eng. ESEC/FSE 2013 - Proc., pp. 290–300,

2013.

[22] A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta, “Mining commonalities and

variabilities from natural language documents,” ACM Int. Conf. Proceeding

Ser., pp. 116–120, 2013.

[23] N. Niu, J. Savolainen, Z. Niu, M. Jin, and J.-R. C. Cheng, “A Systems

Approach to Product Line Requirements Reuse,” IEEE Syst. J., vol. 8, no. 3,

pp. 827–836, Sep. 2014.

[24] K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 2nd ed.

Rocky Nook Inc., 2015.

[25] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Requirement

boilerplates: Transition from manually-enforced to automatically-verifiable

natural language patterns,” 2014 IEEE 4th Int. Work. Requir. Patterns, RePa

2014 - Proc., pp. 1–8, 2014.

292 JITeCS Volume 5, Number 3, Desember 2020, pp 279-292

p-ISSN: 2540-9433; e-ISSN: 2540-9824

[26] J. Carbonnel, M. Huchard, and C. Nebut, “Modelling equivalence classes of

feature models with concept lattices to assist their extraction from product

descriptions,” J. Syst. Softw., vol. 152, pp. 1–23, 2019.

[27] M. Acher et al., “On extracting feature models from product descriptions,”

Proc. Sixth Int. Work. Var. Model. Software-Intensive Syst., vol. VaMoS ’12,

pp. 45–54, 2012.

[28] C. Palomares, C. Quer, and X. Franch, “Requirements reuse and requirement

patterns: a state of the practice survey,” Empir. Softw. Eng., vol. 22, no. 6, pp.

2719–2762, 2017.

[29] F. Nasser, A. Al Omran, and C. Treude, “Choosing an NLP Library for

Analyzing Software Documentation : A Systematic Literature Review and a

Series of Experiments,” 2017.

[30] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with

bloom embeddings, convolutional neural networks and incremental parsing,”

To Appear, 2017.

[31] N. Lindblad et al., “Natural Language Processing of Textual Requirements,”

ICONS 2015 Tenth Int. Conf. Syst. Nat., vol. 9, no. 3, pp. 93–97, 2015.

[32] A. Sree-Kumar, E. Planas, and R. Clarisó, “Extracting software product line

feature models from natural language specifications,” ACM Int. Conf.

Proceeding Ser., vol. 1, pp. 43–53, 2018.

[33] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “PURE: A Dataset of Public

Requirements Documents,” Proc. - 2017 IEEE 25th Int. Requir. Eng. Conf.

RE 2017, no. 1, pp. 502–505, 2017.

